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Abstract. UVR dosimetry data has been collected as part 
of the BRIGHT project. The context of the data is explained 
and various challenges with the data are described along 
with strategies for dealing with these challenges. 
Application of a Bayesian Network for mining the disparate 
types of collected data, including the dosimetry data, is 
proposed. 

Introduction 

Of all cancers, melanoma has perhaps the best 
characterised environmental etiologic contributor, 
ultraviolet radiation (UVR). Approximately 10% of 
melanoma patients have a hereditary pattern of inheritance 
and approximately 25-40% of these hereditary melanoma 
cases are associated with carrying a cyclin-dependent 
kinase inhibitor 2A (CDKN2A) mutation. CDKN2A is also 
referred to as p16 as it will be through the rest of this paper. 
Like another well-known oncogene, p53, p16 is a tumour 
suppressor and evidence suggests a mitigating role in 
melanoma, among other cancers. A mutation in this gene 
subsequently reduces the body’s defence against 
melanoma. 

In the United Kingdom, this high-risk population has an 
approximate 58% lifetime risk of developing melanoma by 
age 80, whereas mutation carriers living in Australia have 
a 91% lifetime risk. This increased gene penetrance of p16 
in a geographical area with higher UVR exposure suggests 
that hereditary melanoma patients would benefit 
substantially by optimizing photoprotection regimens. 
Published data on an initial cohort of hereditary melanoma 
patients suggests that provision of genetic test results 
improved compliance with photoprotection and screening 
behaviours. However, these data were dependent on 
delayed retrospective self-reporting by the participants. To 
increase our confidence in this causal relationship, we 
sought to develop objective measures of photoexposure, 
including the use of a UVR dosimeter, and then correlate 
this with subjective reporting. These objective measures 
should provide a better assessment of actual behavioural 
changes motivated by genetic test reporting.  

BRIGHT 

The Behavior, Risk Information, Genealogy and Health 
Trial, or BRIGHT Project is a prospective longtitudinal 
study of, among other things, changes in photoprotection 
behavior following melanoma genetic counseling and test 
reporting using a variety of objective and subjective 
measurements. The subjective measurements include a new 
self-reporting metric of photoprotection (the Protection 
Adjusted Length of Exposure or PALE) and a record of 
sunburns. The objective measurements include skin color 
differences measured with a Konica Minolta CM-700d 

spectrophotometer and UVR exposure measured with 
Scienterra  UVR dosimeters. 

Several other questions regarding the psychological 
impact of genetic test results are included in the study, but 
only the photoprotection aspects are considered here. Two 
fundamental questions are at the heart of this component of 
the study: 1) does counseling for high-risk patients change 
their photoprotection behavior and 2) does a positive-for-
mutation p16 test result change their photoprotection 
behavior significantly more than counseling alone?   

UVR Dosimetry Measurements 

For the UVR dosimetry component of the study, a 
baseline set of measurements is acquired one month prior 
to genetic test reporting and then repeated during a one 
month follow-up after reporting to assess short-term 
changes. A further one-month sample is acquired one year 
later – during the same calendar month as the initial follow-
up sample to minimize seasonal effects –  to assess long-
term compliance. Patients are selected from families known 
to carry the p16 mutation and a novel control group is 
selected from families known not to carry the p16 mutation 
but who have similar risk to p16+ patients. None of the 
patients have or have had melanoma.  

At this point in the study, drawing conclusions from the 
dosimetry data would be premature due to some discovered 
difficulties in interpreting the data. For this discussion, 
cases where patients did not strictly adhere to the dosimeter 
wearing protocol will be called protocol adherence 
negative or PA- and correctly wearing the dosimeter will 
be called PA+. As an example, the data on many patients 
show several days where no UVR was observed by the 
dosimeter. The initial hypothesis would be to assume the 
patients were PA-. It might instead be that those patients 
practiced avoidance as their primary form of 
photoprotection. To then presume PA- would lead to a 
faulty conclusion. Similarly, there are many days where the 
dosimeter records a small number of very short periods 
(under a minute) of UVR. Many possible explanations can 
be hypothesized for these results. They could be small static 
shocks, an indoors patient who passes near a window, an 
outdoors patient who wears the badge under a long sleeve 
who scratches their head for a moment, etc. If these 
readings are in fact random noise that is expected in these 
devices, the data should be excluded (in a documented way) 
from calculations of compliance. If these readings are not 
normal device noise, they would support compliance to 
some degree. On some days, it is very clear that the patient 
only wore the device when, for instance, the got home from 
work. This kind of behavior does not support a clear 
conclusion because the patient was indeed PA+ for part of 
the day, but not for the whole day. Therefore, more specific 
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conclusions about amount of exposure during peak periods 
vs. non-peak periods become problematic. 

In an attempt to reduce the ambiguities in a principled 
fashion and to increase the confidence in any conclusions 
drawn from the data already collected, two efforts are 
actively being pursued.  The first is to collect a 
comprehensive set of hypotheses that could explain the data 
patterns we observe.  A controlled experiment will be run 
with a small number of dosimeters to recreate these 
potential causes and compare them to the actual data 
collected from the dosimeters. The result of this experiment 
should give us a basis for classifying the data collected 
from patients in 2012 and 2013.  

The second effort to strengthen the conclusions drawn is 
to use a bracketed approach to the analysis. In this 
approach, the data are first assessed in a liberal fashion 
where the patient is assumed to have been PA+ except in 
cases where the interpretation of PA- is beyond doubt. In 
parallel with this method the data are also assessed in a very 
conservative fashion and suspicious data, where the patient 
may have been PA-, is eliminated from consideration. Thus 
given a patient who was photoprotective-compliant, the 
liberal interpretation would tend to support an accurate 
interpretation while the conservative interpretation would 
under-report their compliance. In the case where a patient 
was not particularly photoprotective-compliant, the liberal 
scenario would over-report compliance and the 
conservative scenario would tend towards an accurate 
interpretation. Picking an interpretation in the middle of the 
bracket then avoids over-reporting or under-reporting 
photoprotective-compliance. A further refinement of this 
method is to weight the results of the two interpretations by 
the patient’s own self-reported photoprotection-
compliance. 

Bayesian Network Models 

The effort to answer the main photoprotective 
behavioral questions will require the use of multi-level 
model approaches. Given the variety of measurements and 
the inclusion of age, gender, and education attributes of the 
patients, further interesting insights may be mined from the 
data using graphical models. In particular, a Bayesian 
Network which has the property of introducing causal 
relationships between random variables may yield new 
insights or reinforce existing conclusions. 

A Bayesian Network (BN) is a graphical model 
constructed as a directed acyclical graph (DAG). Each node 
in the graph represents a random variable with a probability 
distribution (or conditional probability distribution if it is 
the child of one or more parents) and each edge defines a 
conditional relationship between a child and parent node. 
The model itself is a factorization of a joint probability 
distribution across the random variables. Such a 
factorization encodes variable independence and 
conditional independencies. From such a graph, different 
forms of inference can be applied regarding the probable 
values a variable could have given knowledge of the values 
of any other variables in the graph. In addition to inference, 
the conditional probability distributions associated with 
each random variable can often be learned from data. 

As a simple example, consider a graph with three nodes: 
two nodes represent the independent throw of two die and 
one node represents the sum of the dice. With a sufficient 

number of examples, the probabilities associated with each 
node (or random variable) can be learned. Now if the 
outcome of one of the die is known, the probability 
distribution of the sum node is marginalized over that node 
and changes significantly. This is called ‘causal reasoning’. 
If the outcome of the sum is instead known, then the 
probability distribution of the two die nodes changes 
accordingly. This is called ‘inferential reasoning’.  A third 
type of reasoning, called ‘intercausal reasoning’ requires a 
more complex example but allows us to infer the outcome 
of the parent of a particular node given some special 
conditions and the knowledge of a sibling node. An 
excellent reference on graphical models can be found in 
Koller and Friedman (2009). 

In the case of the BRIGHT study, a BN is being 
constructed to apply some of the reasoning forms to 
understand how gender or age differences, for example, 
affect compliance. Elicited expert knowledge is being used 
to develop the structure of the graph (the nodes and their 
causal relationships). The data gathered in the study will be 
used to populate the conditional probability distributions 
using established training algorithms (either Maximum 
Likelihood Expectation or Bayesian Learning). The chief 
potential obstacle, common to all machine learning efforts, 
is the limited amount of data. Because this is such a 
common problem, various strategies exist to compensate 
for smaller data sets. In the case of a BN, some paths of 
intercausal reasoning can be sacrificed to strengthen causal 
and inferential reasoning on key relationships. Specifically 
in the BRIGHT BN, each signifiant variable (e.g. age, 
education, gender) which is causally linked to the behavior-
change variable can be learned independently rather than 
simultaneously. 

Discussion 

The BRIGHT project hopes to answer key questions 
about how behavior changes with knowledge of hereditary 
risk alone and with p16+ risk. It will succeed in this effort 
through a combination of objective and improved 
subjective measurements using a novel control group. The 
difficulties to be overcome relate to the amount of data 
collected and the noise in the UV dosimetry data. Strategies 
have been identified to attempt to manage these difficulties. 
A possible addition to the BRIGHT project, a Bayesian 
Network, may supplement the knowledge gained from the 
variety of data collected. 
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